

Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2024»

в Высшей школе государственного администрирования (факультет) Московского государственного университета имени

АВАНГАРД ЦИФРОВОЙ ТРАНСФОРМАЦИИ ГОСУДАРСТВЕННОГО АДМИНИСТРИРОВАНИЯ: СТРАТЕГИИ, ТЕХНОЛОГИИ, ЭФФЕКТИВНОСТЬ

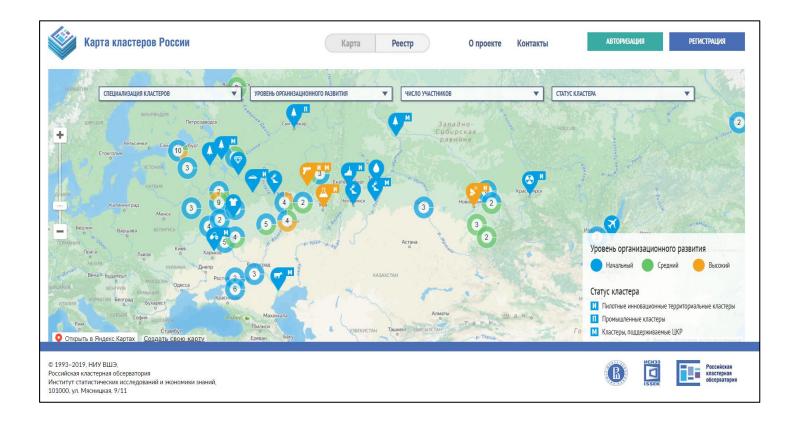
Федеральное государственное образовательное бюджетное учреждение высшего образования «Финансовый университет при Правительстве Российской Федерации» Факультет информационных технологий и анализа больших данных Департамент математики

Модель развития территориального кластерообразования в регионе

Дубинский М.С.

аспирант 2 курса факультета информационных технологий и анализа больших данных Финансовый университет при Правительстве Российской Федерации

Научный руководитель: д.э.н. Трегуб И.В.


E-mail: MSDubinskij@fa.ru

Кластерная политика в РФ

Стратегия инновационного развития до 2020 года (признана провальной)

Программа «Промышленный кластер 2.0» (начала работать в конце 2022 года)

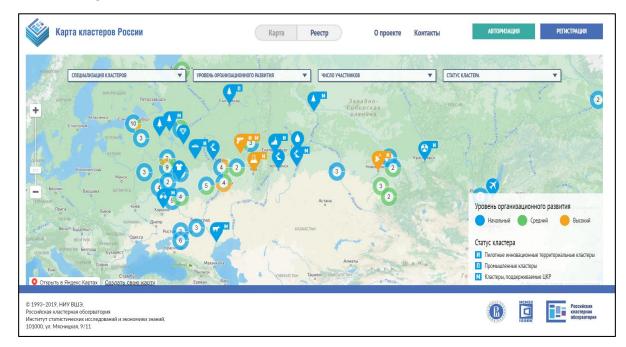
- ✓ Существует 119 территориальных кластеров: из них 3 промышленные, 37 инновационные
- ✓>70% низкий уровень организации

Методика вычисления уровня кластерного развития региона

- 1. Определение кластеров: Идентификация ключевых кластеров в регионе.
- 2. Выбор показателей: Выбор набора количественных и качественных показателей для оценки каждого кластера. Показатели могут включать уровень занятости, объем инвестиций, количество инновационных компаний, производительность труда, уровень образования и др.
- 3. Сбор данных: Сбор данных по каждому выбранному показателю для всех кластеров.
- 4. Нормализация данных: Приведение всех показателей к единой шкале и диапазону значений.
- 5. Расчет индексов и рейтингов: На основе собранных данных вычисляются индексы и рейтинги кластерного развития для каждого кластера.

Карта кластеров Рос	ссии		Карта	Реестр		0 проекте
КЛАСТЕР	Субъект РФ •	ключевая специализация	число участников	ЧИСЛЕННОСТЬ РАБОТНИКОВ	год создания	УРОВЕНЬ ОРГРАЗВИТИЯ
Алтайский полимерный композитный кластер	Алтайский край	Новые материалы	23	3435	2014	Оредний
Алтайосий кластер энергомашиностроения и энергоэффективных технологий	Алтайский край	Производство электроэнергии и электрооборудования	19	1352	2016	Оредний
Алтайский кластер аграрного машиностроения	Алтайский край	Производство машин и оборудования (в т.ч. станков и спецтехники, подъемного и гидропневнатического оборудования, роботов)	24	5003	2009	П Средний
Барнаульский промышленный химический кластер	Алтайский край	Химическое производство	13	4466	2017	Оредний
Алтайский биофармацевтический кластер	Алтайский к рай	Фармацевтика	29	6673	2008	П Средний
Инновационный территориальный лесопромышленный кластер Архангельской области "ПоморИнноваЛес"	Архангельская область	Лесоводство и деревообработка; целлюлозно-бумажное производство	31	20110	2014	Средний
Судостроительный инновационный территориальный кластер Архангельской области	Архангельская область	Судостроение	23	50427	2012	Средний
Аквакультура и рыбное хозяйство Астраханской области	Астраханская область	Сельское хозяйство и рыболовство	12	599	2013	П Начальн
Кластер Биофармацевтики	Белгородская область	Фармацевтика	22	2498	2014	П Начальн
Туристический кластер Брянской области	Брянская область	Туризм (индустрия развлечений и отдыха, искусство, спорт)	20	307	2020	Ш Начальні
Кластер цифровой экономики Брянской	Брянская область	Информационно-коммуникационные	24	173	2019	П Начальн

Показатель уровня кластерного развития региона


$$IDC = \frac{\sum_{i=1}^{N} (\frac{HR_i}{1000} + \frac{Co_i}{10} + LD_i)}{N}, LD_i = \begin{cases} 0; \ LD - 'low \ level' \\ 0.5; \ LD - 'middle \ level'; \ i = \overline{1...N} \\ 1; \ LD - 'high \ level' \end{cases}$$

 HR_{i} – количество работников в кластере;

 Co_i – количество организаций в составе кластера;

 LD_i — уровень организации кластера;

N — количество кластеров.

Модель уровня развития кластеров

Предполагается, что уровень развития кластеров (IDC) в регионе зависит от данных факторов: IDC = a * EI + b * LID + c * HR

Где:

- *EI* экономический показатель (для оценки использовался ВРП (*GRP*));
- *I* представляет собой уровень инноваций (для оценки использовался инновационная активность организацио в регионе (*IAO*));
- *HR* представляет собой некоторую численность человеческих ресурсов (для оценки использовался показатель численности выпуска квалифицированных специалистов (*SHR*)).
- a, b и c это весовые коэффициенты, отражающие важность каждого фактора относительно других.

Матрица корреляций

	IDC	GRP	SHR	IAO
IDC	1			
GRP	0,20	1		
SHR	0,76	0,37	1	
IAO	0,25	0,02	0,49	1

Матрица корреляций

	SHR	GRP	IDC	IAO
SHR	1			
GRP	0,37	1		
IDC	0,76	0,20	1	
IAO	0,49	0,02	0,25	1

Модель множественной регрессии

SHR + 3,04 = 0, 10 · GRP + 0, 95 · IDC + 1,32 · IAO + ε

Матрица корреляций

	SHR	GRP	IDC	IAO
SHR	1			
GRP	0,37	1		
IDC	0,76	0,20	1	
IAO	0,49	0,02	0,25	1

Регрессионная статистика				
Множественный <i>R</i>	0,85			
R-квадрат	0,72			
Норм. R-квадрат	0,69			
Станд. ошибка	10,82			
Наблюдения	35			


Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	3	9393,88	3131,29	26,74	9,8282E-09
Остаток	31	3630,33	117,11		
Итого	34	13024,21			

	Коэффициенты	Станд. ошибка	t-статистика	Р-Значение
Ү-пересечение	-3,04	5,1295	-0,5932	0,5573
GRP	0,10	0,0416	2,4852	0,0185
IDC	0,95	0,1518	6,2530	5,98556E-07
IAO	1,32	0,4013	3,2900	0,0025

Модель множественной регрессии

 $SHR + 3,04 = 0, 10 \cdot GRP + 0, 95 \cdot IDC + 1,32 \cdot IAO + \varepsilon$

Анализ мултиколлинеарности модели

1. Анализ мультиколлинеарности на основе матрицы коэффициентов корреляции.

В нашем случае все парные коэффициенты корреляции |r| < 0.7, что говорит об **отсутствии мультиколлинеарности факторов**.

Проверим значимость полученных парных коэффициентов корреляции с помощью t-критерия Стьюдента. Таким образом, связь между (y и x_2) является существенной. Наибольшее влияние на результативный признак оказывает фактор x_2 (r=0.76), значит, при построении модели он войдет в регрессионное уравнение первым.

2. Ридж-регрессия.

$$VIF(b_j)=rac{1}{1-R_j^2}$$
 , где R_j^2 коэффициент множественной детерминации.

$$VIF(b_{23}) = 1,0426$$

 $VIF(b_{23}) = 1,0004$
 $VIF(b_{23}) = 1,0602$

По данному критерию мультиколлинеарность отсутствует.

Регрессионная статистика						
Множественный R	0,85					
R-квадрат	0,72					
Норм. R-квадрат	0,69					
Станд. ошибка	10,82					
Наблюдения	35					

Тестирование и устранение мультиколлинеарности

1. Мультиколлинеарность методом Фаррара-Глоубера по первому виду статистических критериев (критерий "хи-квадрат")

$$\chi^2 = 44,62$$
 $\chi_{\text{табл}}^2(3;0,05) = 7,81$
 $\chi^2 > \chi_{\text{табл}}^2$,

присутствует мультиколлинеарность.

2. Мультиколлинеарность по второму виду статистических критериев (критерий Фишера)

$$F_{\text{табл}}(33;3) = 8,59$$

 $F_1 = 28,46 > F_{\rm Ta6\pi}$, переменная у мультиколлинеарна с другими.

 $F_2 = 2,77 < F_{{\rm Ta6}_{\rm J}}$,, переменная x_1 немультиколлинеарна с другими.

 $F_3 = 16,75 > F_{{
m Ta6}_{
m J}}$, переменная x_2 немультиколлинеарна с другими.

 $F_4 = 4,89 < F_{{
m Ta6}_{
m J}}$, переменная x_3 немультиколлинеарна с другими.

3. Мультиколлинеарность по третьему виду статистических критериев (критерий Стьюдента). Для этого найдем частные коэффициенты корреляции.

Можно сделать вывод, что при построении регрессионного уравнения следует отобрать факторы x_2 .

Проверка предпосылок МНК

Гетероскедастичность

1. Тест ранговой корреляции Спирмена

коэффициент ранговой корреляции Спирмена: p=0.22

По таблице Стьюдента находим $t(\alpha/2,k)=(0.05/2;33)=2,33$

$$T_{kp} = 2.329 \cdot \sqrt{\frac{1 - 0.22^2}{35 - 2}} = 0.4$$

Поскольку T_{kp} > p, то принимаем гипотезу о равенстве 0 коэффициента ранговой корреляции Спирмена.

Другими словами, коэффициент ранговой корреляции статистически - не значим и ранговая корреляционная связь между оценками по двум тестам незначимая.

Проверим гипотезу Н₀: гетероскедастичность отсутствует.

Поскольку 2.33 > 0.4, то гипотеза об отсутствии гетероскедастичности принимается.

2. Тест Голдфелда-Квандта.

$$F_{kp}(12,12) = 4,75$$

Строим F-статистику:

$$F = 6.89$$

Поскольку $F > F_{kp} = 4,75$, то гипотеза об отсутствии гетероскедастичности отклоняется.

Проверка предпосылок МНК

Проверка на наличие автокорреляции остатков

1. Коэффициент автокорреляции

Если коэффициент автокорреляции $r_{ei} < 0.5$, то есть основания утверждать, что автокорреляция отсутствует.

$$S_{eY} = \frac{1}{\sqrt{35}} = 0.17$$

$$r_1 \approx \frac{\sum \epsilon_i \cdot \epsilon_{i-1}}{\sum \epsilon_i^2} = \frac{210.823}{3630.329} = 0.0581$$

$$-2.22 \cdot 0.17 < r_1 < 2.22 \cdot 0.17$$

Так как $-0.39 < r_1 = 0.06 < -0.39$, то свойство независимости остатков выполняется.

Автокорреляциия отсутствует.

2. Критерий Дарбина-Уотсона

Автокорреляция отсутствует, если выполняется следующее условие:

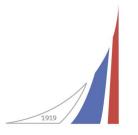
$$d_1 < DW \text{ if } d_2 < DW < 4 - d_2.$$

DW = 1.86 автокорреляция остатков отсутствует.

у	y(x)	$e_i = y - y(x)$	e^2	$(e_i - ei_1)^2$
36.19	26.42	9.772	95.49	0
10.75	9.54	1.212	1.47	73.27
15.61	25.26	-9.649	93.11	117.96
13.32	17.51	-4.191	17.57	29.79
26.58	22.17	4.409	19.44	73.96
27.86	24.86	3.004	9.03	1.97
33.25	14.46	18.787	352.97	249.10
32.75	27.86	4.888	23.89	193.20
7.28	11.10	-3.82	14.59	75.83
45.2	27.18	18.024	324.86	477.16
9.53	22.56	-13.034	169.87	964.56
10	23.64	-13.637	185.96	0.36
8.37	16.90	-8.526	72.69	1014.57
54.77	43.12	11.653	135.80	407.20
50.43	41.98	8.455	71.49	10.23
39.85	41.20	-1.352	1.83	96.18
8.6	8.99	-0.394	0.16	0.92
44.1	23.29	20.81	433.05	449.61
17.5	16.02	1.478	2.19	373.72
			3630.33	6741.34

$$DW = \frac{\sum (e_i - e_{i-1})^2}{\sum e_i^2}$$

Источники и литература


- 1. Короткова К. С. Понятие и характерные черты территориальных кластеров // Ученые записки Тамбовского отделения РоСМУ. 2018. № 10. С. 56-61
- 2. Кудряшов В. С. Феномен экономических кластеров: понятие и характерные черты // Экономика и управление народным хозяйством. СПб., 2019. № 6(8). С. 42-48.
- 3. Методические рекомендации по реализации кластерной политики в субъектах Российской Федерации от 26.12.2008 №20615-ак/д19. утв. Министерством экономического развития РФ. 23 с.
- 4. Российская кластерная обсерватория: https://cluster.hse.ru
- 5. Федеральная служба государственной статистики: https://rosstat.gov.ru

Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2024»

Высшей школе государственного администрирования (факультет) Московского государственного университета имени

АВАНГАРД ЦИФРОВОЙ ТРАНСФОРМАЦИИ ГОСУДАРСТВЕННОГО АДМИНИСТРИРОВАНИЯ: СТРАТЕГИИ, ТЕХНОЛОГИИ, ЭФФЕКТИВНОСТЬ

Федеральное государственное образовательное бюджетное учреждение высшего образования «Финансовый университет при Правительстве Российской Федерации» Факультет информационных технологий и анализа больших данных Департамент математики

Модель развития территориального кластерообразования в регионе

Дубинский М.С.

аспирант 2 курса факультета информационных технологий и анализа больших данных Финансовый университет при Правительстве Российской Федерации Научный руководитель: д.э.н. Трегуб И.В.

E-mail: MSDubinskij@fa.ru